Publications
CMAP Theses are available by following this link:
Discover CMAP theses
Listed below, are sorted by year, the publications appearing in the HAL open archive.
2010
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Agrandissement d'un ensemble de Mandelbrot dans l'ensemble des pseudo-quaternions (un 'Mandelbulb')
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Agrandissement d'un ensemble de Mandelbrot dans l'ensemble des pseudo-quaternions (un 'Mandelbulb') -ou 'Vingt-mille lieues sous les mers
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Agrandissement d'un ensemble de Mandelbrot dans l'ensemble des pseudo-quaternions (un 'Mandelbulb') -ou 'Vingt-mille lieues sous les mers
- Colonna Jean-François
-
Agrandissement d'un ensemble de Mandelbrot dans l'ensemble des pseudo-quaternions (un 'Mandelbulb')
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Vue artistique d'un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Agrandissement d'un ensemble de Mandelbrot dans l'ensemble des pseudo-quaternions (un 'Mandelbulb')
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Agrandissement d'un ensemble de Mandelbrot dans l'ensemble des pseudo-quaternions (un 'Mandelbulb')
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Planification de mouvements pour les systèmes non-holonomes et étude de la contrôlabilité spectrale pour les équations de Schrödinger linéarisées
- Long Ruixing
-
La dynamique d'une texture fractale
- Colonna Jean-François