Partager

Publications

Publications

Les thèses soutenues au CMAP sont disponibles en suivant ce lien:
Découvrez les thèses du CMAP

Sont listées ci-dessous, par année, les publications figurant dans l'archive ouverte HAL.

2011

  • Minimal Time Problems with Moving Targets and Obstacles
    • Bokanowski Olivier
    • Zidani Hasnaa
    , 2011, 18, Part 1, pp.2589-2593. We consider minimal time problems governed by nonlinear systems under general time dependant state constraints and in the two-player games setting. In general, it is known that the characterization of the minimal time function, as well as the study of its regularity properties, is a difficult task in particular when no controlability assumption is made. In addition to these difficulties, we are interested here to the case when the target, the state constraints and the dynamics are allowed to be time-dependent. We introduce a particular "reachability" control problem, which has a supremum cost function but is free of state constraints. This auxiliary control problem allows to characterize easily the backward reachable sets, and then, the minimal time function, without assuming any controllability assumption. These techniques are linked to the well known level-set approachs. Partial results of the study have been published recently by the authors in SICON. Here, we generalize the method to more complex problems of moving target and obstacle problems. Our results can be used to deal with motion planning problems with obstacle avoidance. (10.3182/20110828-6-IT-1002.02261)
    DOI : 10.3182/20110828-6-IT-1002.02261
  • Weak Dynamic Programming Principle for Viscosity Solutions
    • Bouchard Bruno
    • Touzi Nizar
    SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2011, 49 (3), pp.948-962. We prove a weak version of the dynamic programming principle for standard stochastic control problems and mixed control-stopping problems, which avoids the technical difficulties related to the measurable selection argument. In the Markov case, our result is tailor-maid for the derivation of the dynamic programming equation in the sense of viscosity solutions.
  • Reconstruction of the electromagnetic field in layered media using the concept of approximate transmission conditions
    • Ozdemir Ozgur
    • Haddar Houssem
    • Yaka Ali
    IEEE Transactions on Antennas and Propagation, Institute of Electrical and Electronics Engineers, 2011, 59 (8), pp.2964 - 2972. (10.1109/TAP.2011.2158967)
    DOI : 10.1109/TAP.2011.2158967
  • Energy contracts management by stochastic programming techniques
    • Cen Zhihao
    • Bonnans J. Frederic
    • Christel Thibault
    Annals of Operations Research, Springer Verlag, 2011, 200 (1), pp.199-222. We consider the problem of optimal management of energy contracts, with bounds on the local (time step) amounts and global (whole period) amounts to be traded, integer constraint on the decision variables and uncertainty on prices only. After building a finite state Markov chain by using vectorial quantization tree method, we rely on the stochastic dual dynamic programming (SDDP) method to solve the continuous relaxation of this stochastic optimization problem. An heuristic for computing sub optimal solutions to the integer optimization problem, based on the Bellman values of the continuous relaxation, is provided. Combining the previous techniques, we are able to deal with high-dimension state variables problems. Numerical tests applied to realistic energy markets problems have been performed. (10.1007/s10479-011-0973-5)
    DOI : 10.1007/s10479-011-0973-5
  • Bandlet Image Estimation with Model Selection
    • Dossal Charles H
    • Le Pennec Erwan
    • Mallat Stéphane
    Signal Processing, Elsevier, 2011, 91 (12), pp.2743-2753. To estimate geometrically regular images in the white noise model and obtain an adaptive near asymptotic minimaxity result, we consider a model selection based bandlet estimator. This bandlet estimator combines the best basis selection behaviour of the model selection and the approximation properties of the bandlet dictionary. We derive its near asymptotic minimaxity for geometrically regular images as an example of model selection with general dictionary of orthogonal bases. This paper is thus also a self contained tutorial on model selection with orthogonal bases dictionary. (10.1016/j.sigpro.2011.01.013)
    DOI : 10.1016/j.sigpro.2011.01.013
  • Sensor fault reconstruction and observability for unknown inputs, with an application to wastewater treatment plants
    • Methnani Salowa
    • Gauthier Jean-Paul
    • Lafont Frédéric
    International Journal of Control, Taylor & Francis, 2011, 84, pp.822-833.
  • Homogenization of the linearized ionic transport equations in rigid periodic porous media
    • Allaire Grégoire
    • Mikelic Andro
    • Piatnitski Andrey
    Journal of Mathematical Physics, American Institute of Physics (AIP), 2011, 52 (6), pp.063701. (10.1063/1.3521555)
    DOI : 10.1063/1.3521555
  • New global stability estimates for the Gel'fand-Calderon inverse problem
    • Novikov Roman
    Inverse Problems, IOP Publishing, 2011, 27 (1), pp.015001 (21pp). We prove new global stability estimates for the Gel'fand-Calderon inverse problem in 3D. For sufficiently regular potentials this result of the present work is a principal improvement of the result of [G. Alessandrini, Stable determination of conductivity by boundary measurements, Appl. Anal. 27 (1988), 153-172]. (10.1088/0266-5611/27/1/015001)
    DOI : 10.1088/0266-5611/27/1/015001
  • Direct and inverse medium scattering in a three-dimensional homogeneous planar waveguide
    • Arens Tilo
    • Gintides Drossos
    • Lechleiter Armin
    SIAM Journal on Applied Mathematics, Society for Industrial and Applied Mathematics, 2011, 71 (3), pp.753--772. (10.1137/100806333)
    DOI : 10.1137/100806333
  • Absence of exponentially localized solitons for the Novikov--Veselov equation at negative energy
    • Kazeykina Anna
    • Novikov Roman
    Nonlinearity, IOP Publishing, 2011, 24, pp.1821-1830. We show that Novikov--Veselov equation (an analog of KdV in dimension 2 + 1) does not have exponentially localized solitons at negative energy. (10.1088/0951-7715/24/6/007)
    DOI : 10.1088/0951-7715/24/6/007
  • Large time asymptotics for the Grinevich-Zakharov potentials
    • Kazeykina Anna
    • Novikov Roman
    Bulletin des Sciences Mathématiques, Elsevier, 2011, 135 (4), pp.374-382. In this article we show that the large time asymptotics for the Grinevich-Zakharov rational solutions of the Novikov-Veselov equation at positive energy (an analog of KdV in 2+1 dimensions) is given by a finite sum of localized travel waves (solitons). (10.1016/j.bulsci.2011.02.003)
    DOI : 10.1016/j.bulsci.2011.02.003
  • Coupling discontinuous Galerkin methods and retarded potentials for transient wave propagation on unbounded domains
    • Abboud Toufic
    • Joly Patrick
    • Rodríguez Jerónimo
    • Terrasse Isabelle
    Journal of Computational Physics, Elsevier, 2011, 230 (15), pp.5877-5907. This work deals with the numerical simulation of wave propagation on unbounded domains with localized heterogeneities. To do so, we propose to combine a discretization based on a discontinuous Galerkin method in space and explicit finite differences in time on the regions containing heterogeneities with the retarded potential method to account the unbounded nature of the computational domain. The coupling formula enforces a discrete energy identity ensuring the stability under the usual CFL condition in the interior. Moreover, the scheme allows to use a smaller time step in the interior domain yielding to quasi-optimal discretization parameters for both methods. The aliasing phenomena introduced by the local time stepping are reduced by a post-processing by averaging in time obtaining a stable and second order consistent (in time) coupling algorithm. We compute the numerical rate of convergence of the method for an academic problem. The numerical results show the feasibility of the whole discretization procedure. © 2011 Elsevier Inc. (10.1016/j.jcp.2011.03.062)
    DOI : 10.1016/j.jcp.2011.03.062
  • An adaptive high-gain observer for wastewater treatment systems
    • Lafont Frédéric
    • Busvelle Eric
    • Gauthier Jean-Paul
    Journal of Process Control, Elsevier, 2011, 21, pp.893-900.
  • Les outils stochastiques des marchés financiers
    • El Karoui Nicole
    • Gobet Emmanuel
    , 2011, pp.238. Depuis 40 ans, les outils mathématiques probabilistes ont montré leur rôle central dans le développement d’outils d’aide à la décision pour les marchés financiers. Ils offrent un cadre méthodologique robuste de modélisation et calcul des risques associés aux produits dérivés, ces fameux instruments financiers qui dépendent de manière plus ou moins complexe d’autres produits financiers plus simples (actions, indices, taux de change, taux d’intérêt, matières premières ...). Cet ouvrage se veut être une introduction aux outils stochastiques de la finance de marché, et à leurs utilisations dans la gestion dynamique des produits dérivés. Pour le développement des outils probabilistes du calcul stochastique, nous suivons une approche élémentaire à la Föllmer, qui permettra à un lecteur ayant juste des bases de probabilité de rentrer plus facilement dans le sujet. Pour autant, cette grande simplification permet de traiter de manière complète des applications aux options (simples ou exotiques) sur actions, à la modélisation des taux d’intérêt ou du risque de crédit. À travers l’expérience de la crise financière actuelle, nous expliquons l’importance des hypothèses sous-tendant l’utilisation de ces outils en salle de marché.
  • The singular values and vectors of low rank perturbations of large rectangular random matrices
    • Benaych-Georges Florent
    • Rao Nadakuditi Raj
    , 2011. In this paper, we consider the singular values and singular vectors of finite, low rank perturbations of large rectangular random matrices. Specifically, we prove almost sure convergence of the extreme singular values and appropriate projections of the corresponding singular vectors of the perturbed matrix. As in the prequel, where we considered the eigenvalue aspect of the problem, the non-random limiting value is shown to depend explicitly on the limiting singular value distribution of the unperturbed matrix via an integral transforms that linearizes rectangular additive convolution in free probability theory. The large matrix limit of the extreme singular values of the perturbed matrix differs from that of the original matrix if and only if the singular values of the perturbing matrix are above a certain critical threshold which depends on this same aforementioned integral transform. We examine the consequence of this singular value phase transition on the associated left and right singular eigenvectors and discuss the finite $n$ fluctuations above these non-random limits.
  • Exponential instability in the Gel'fand inverse problem on the energy intervals
    • Isaev Mikhail
    Journal of Inverse and Ill-posed Problems, De Gruyter, 2011, 19 (3), pp.453-473. We consider the Gel'fand inverse problem and continue studies of [Mandache,2001]. We show that the Mandache-type instability remains valid even in the case of Dirichlet-to-Neumann map given on the energy intervals. These instability results show, in particular, that the logarithmic stability estimates of [Alessandrini,1988], [Novikov,Santacesaria,2010] and especially of [Novikov,2010] are optimal (up to the value of the exponent).
  • Polymorphic evolution sequence and evolutionary branching
    • Champagnat Nicolas
    • Méléard Sylvie
    Probability Theory and Related Fields, Springer Verlag, 2011, 151 (1-2), pp.45-94. We are interested in the study of models describing the evolution of a polymorphic population with mutation and selection in the specific scales of the biological framework of adaptive dynamics. The population size is assumed to be large and the mutation rate small. We prove that under a good combination of these two scales, the population process is approximated in the long time scale of mutations by a Markov pure jump process describing the successive trait equilibria of the population. This process, which generalizes the so-called trait substitution sequence, is called polymorphic evolution sequence. Then we introduce a scaling of the size of mutations and we study the polymorphic evolution sequence in the limit of small mutations. From this study in the neighborhood of evolutionary singularities, we obtain a full mathematical justification of a heuristic criterion for the phenomenon of evolutionary branching. To this end we finely analyze the asymptotic behavior of 3-dimensional competitive Lotka-Volterra systems. (10.1007/s00440-010-0292-9)
    DOI : 10.1007/s00440-010-0292-9
  • Generalized impedance boundary conditions for thin dielectric coatings with variable thickness
    • Aslanyurek Birol
    • Haddar Houssem
    • Shahinturk Hulya
    Wave Motion, Elsevier, 2011, 48 (7), pp.681-700. (10.1016/j.wavemoti.2011.06.002)
    DOI : 10.1016/j.wavemoti.2011.06.002
  • Asymptotic behaviour of the number of the Eulerian circuits
    • Isaev Mikhail
    The Electronic Journal of Combinatorics, Open Journal Systems, 2011, 18 (1), pp.219. We determine the asymptotic behaviour of the number of the Eulerian circuits in undirected simple graphs with large algebraic connectivity (the second-smallest eigenvalue of the Laplacian matrix). We also prove some new properties of the Laplacian matrix.
  • A continuous semigroup of notions of independence between the classical and the free one
    • Benaych-Georges Florent
    • Lévy Thierry
    The Annals of Probability, Institute of Mathematical Statistics, 2011, 39 (3), pp.904-938. In this paper, we investigate a continuous family of notions of independence which interpolates between the classical and free ones for non-commutative random variables. These notions are related to the liberation process introduced by D. Voiculescu. To each notion of independence correspond new convolutions of probability measures, for which we establish formulae and of which we compute simple examples. We prove that there exists no reasonable analogue of classical and free cumulants associated to these notions of independence. (10.1214/10-AOP573)
    DOI : 10.1214/10-AOP573
  • Spectral theory for a mathematical model of the weak interaction: The decay of the intermediate vector bosons W±, II
    • Aschbacher Walter H.
    • Barbaroux Jean-Marie
    • Faupin Jérémy
    • Guillot Jean-Claude
    Annales Henri Poincaré, Springer Verlag, 2011, 12 (8), pp.1539-1570. We do the spectral analysis of the Hamiltonian for the weak leptonic decay of the gauge bosons W+/-. Using Mourre theory, it is shown that the spectrum between the unique ground state and the first threshold is purely absolutely continuous. Neither sharp neutrino high energy cutoff nor infrared regularization are assumed. (10.1007/s00023-011-0114-3)
    DOI : 10.1007/s00023-011-0114-3
  • The role of electrode direction during axonal bipolar electrical stimulation : a bidomain computational model study
    • Pantz Olivier
    • Mandonnet Emmanuel
    Acta Neurochirurgica, Springer Verlag, 2011.
  • Large Time-Step Numerical Scheme for the Seven-Equation Model of Compressible Two-Phase Flows
    • Chalons Christophe
    • Coquel Frédéric
    • Kokh Samuel
    • Spillane Nicole
    , 2011, pp.pp. 225-233. We consider the seven-equation model for compressible two-phase flows and propose a large time-step numerical scheme based on a time implicit-explicit Lagrange-Projection strategy introduced by Coquel et al. for Euler equations. The main objective is to get a Courant-Friedrichs-Lewy (CFL) condition driven by (slow) contact waves instead of (fast) acoustic waves. (10.1007/978-3-642-20671-9_24)
    DOI : 10.1007/978-3-642-20671-9_24
  • Stable reconstruction of generalized impedance boundary conditions
    • Bourgeois Laurent
    • Chaulet Nicolas
    • Haddar Houssem
    Inverse Problems, IOP Publishing, 2011, 27 (9), pp.095002. (10.1088/0266-5611/27/9/095002)
    DOI : 10.1088/0266-5611/27/9/095002
  • Lévy flights in evolutionary ecology
    • Jourdain Benjamin
    • Méléard Sylvie
    • Woyczynski Wojbor
    Journal of Mathematical Biology, Springer, 2011, pp.31 p.. We are interested in modeling Darwinian evolution resulting from the interplay of phenotypic variation and natural selection through ecological interactions. The population is modeled as a stochastic point process whose generator captures the probabilistic dynamics over continuous time of birth, mutation, and death, as influenced by each individual's trait values, and interactions between individuals. An offspring usually inherits the trait values of her progenitor, except when a random mutation causes the offspring to take an instantaneous mutation step at birth to new trait values. In the case we are interested in, the probability distribution of mutations has a heavy tail and belongs to the domain of attraction of a stable law. We investigate the large-population limit with allometric demographies: larger populations made up of smaller individuals which reproduce and die faster, as is typical for micro-organisms. We show that depending on the allometry coefficient the limit behavior of the population process can be approximated by nonlinear Lévy flights of different nature: either deterministic, in the form of nonlocal fractional reaction-diffusion equations, or stochastic, as nonlinear super-processes with the underlying reaction and a fractional diffusion operator. These approximation results demonstrate the existence of such nontrivial fractional objects; their uniqueness is also proved. (10.1007/s00285-011-0478-5)
    DOI : 10.1007/s00285-011-0478-5