Partager

Séminaire du Pôle Probabilités

Séminaire du Pôle Probabilités

Lieu : nouvelle salle de conférence du CMAP (salle 3005, dernier étage, aile 05 - soit le long couloir perpendiculaire à l’aile 0)

Horaire : un mardi sur deux, de 10h à 11h

Remarque : aux mêmes dates et dans la même salle, à 11h30, a lieu le séminaire du pôle Analyse.

Les organisateurs : Quentin Cormier, Stefano De Marco, Fabrice Djete, Clément Foucart, Cyril Marzouk & Milica Tomasevic
(à contacter à l'alias orga-seminaire-pole-proba "at" meslistes.polytechnique.fr)

 
 

Novembre 2024

Mardi 19 Novembre

Marek Kimmel (Rice University, Houston, Etats-Unis) - Estimating Past Events in Cancer Through Stochastic Modeling of DNA Sequencing Data

The starting point of stochastic modeling of cancer is branching evolution, in which cells share similar growth and mutation rates (the clonal phase). Later, some cells acquire mutations in their DNA that may grant a selective advantage to the subclones initiated by these cells (they grow faster or die slower), so that the tumor is now composed of distinct clusters of cells. We discuss briefly mathematical and computational approaches to such modeling, based on models of population genetics (such as the coalescent of Griffiths-Tavaré) and branching processes (Lambert and Durrett’s approach).

The inference task is estimation of evolutionary parameters based on one snapshot in time (DNA sample from one time point). The emphasis is on arrival times of sub-clones and their growth rates with mutation rates variability confounding the estimates. We derived estimating equations, which can be solved and, although simplified, allow insights into estimability. We illustrate the considerations with simulated and data-based examples, which link outcomes of such estimations to screening for early cancer detection and resulting decision-making.

One of the great hopes of cancer research is single-cell DNA sequencing which, in theory, allows direct visualization of the pedigrees of clones in a tumor. For various reason, this promise is still awaiting fulfillment. One of the difficulties is resolving clones initiated by advantageous mutants from those arising from random fluctuations, as in the “jackpot” effect, observed already in 1940’s by Luria and Delbrűck. We developed a method based on Tibshirani clustering that seems to be resulting in less misclassification than some others. Results will be presented.

Another important aspect is that human cancers frequently have prominent spatial structure. One example is urinary bladder cancer. The underlying organ is a roughly spherical ball. Based on a unique collection of whole organ specimens, we can obtain insight into order and timing of mutations in this specific case, using a parsimonious approach based on branching processes with immigration model.

Collaborators (order idiosyncratic): Andrew Koval, Emmanuel Asante, Ren-Yi Wang (Rice U.), Khanh Ngoc Dinh and Simon Tavaré (Columbia U.), Bogdan Czerniak and Peng Wei (MD Anderson), Roman Jaksik, Monika Kurpas, and Pawel Kuś (Silesian Tech.), Olga Gorlova and Ivan Gorlov (Baylor College of Medicine).

 

Décembre 2024

Mardi 03 décembre

Mehdi Talbi (Univ. Paris Cité) - 

 

Mardi 17 décembre 

Paul Gassiat (Paris Dauphine) -

 

Janvier 2025

Mardi 07 janvier

 

Mardi 21 janvier

 

 

Février 2025

Mardi 04 février

 

Mardi 18 février  

 

Mars 2025

Mardi 04 mars

 

Mardi 18 mars

 

 

Avril 2025

Mardi 1 avril

 

Mardi 29 avril

 

 

Mai 2025

Mardi 13 mai

 

Mardi 27 mai

 

 

Juin 2025

Mardi 10 juin

 

Mardi 24 juin

 

 

____________________________________________________________

Anciens séminaires

Novembre 2024

 

Mardi 5 Novembre

Arno Siri-Jégousse (UNAM Mexique) - Évolution et généalogies de populations autosimilaires

Dans ce projet conjoint avec Alejandro H. Wences, nous connectons les domaines de la génétique des populations mathématique et des processus de Markov auto-similaires (AS) en dimensions infinies. Plus précisément, nous proposons un changement de perspective depuis la propriété de branchement comme paradigme dominant pour la modélisation des populations, vers une approche basée sur la propriété d'auto-similarité, que nous avons également introduite pour la première fois dans le contexte des processus stochastiques à valeurs dans l'espace des mesures positives (PVM). En étendant la transformation de Lamperti pour les processus auto-similaires au cas en dimensions infinies, nous avons pu généraliser le célèbre résultat de Birkner et al. (2005) en génétique des populations. Dans ce papier, les auteurs et autrices décrivent la généalogie de populations modélisées par un PVM de branchement alpha-stable, en termes de Beta-coalescents. Dans notre travail. nous décrivons la généalogie de populations dont la taille totale décrit un processus de Markov positif et AS en termes de n'importe quel Lambda-coalescent. Nos résultats démontrent le potentiel de la perspective de l'auto-similarité pour l'étude de modèles de populations plus complexes dans lesquels la dynamique de reproduction des individus dépend de la taille totale de la population. Parallèlement, les PVM, associés aux outils analytiques disponibles dans le domaine de la génétique des populations, comme les méthodes de dualité, constituent un modèle mathématique prometteur pour le développement de la théorie des processus de Markov AS dans le contexte des dimensions infinies.
 

 

Octobre 2024

Mardi 22 Octobre

Michael Goldman (CMAP)- Recent progress on the optimal matching problem

In this talk I will review some recent progress in the understanding of the (random) optimal matching problem. While the work of Ajtai-Komlos-Tusnady in the 80's on this classical optimization problem attracted a lot of attention from the probability community (see the book by Talagrand), this problem has seen a renewed interest from the PDE community thanks to the ansatz proposed by Caracciolo Lucibello, Parisi and Sicuro in 2014. I will explain to which extent this ansatz can be rigorously justified and show how it leads to a deeper understanding of this problem.